Engineering Controllable Protein Degradation
نویسندگان
چکیده
منابع مشابه
LOVely enzymes – towards engineering light‐controllable biocatalysts
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the Light, Oxygen, Voltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to ...
متن کاملRuminal Protein Degradation and Estimation of Rumen Microbial Protein Production
Animal agricultural production systems are major sources of nonpoint pollution affecting quality of water sources. Nitrogen has been identified as the foremost source of nonpoint water pollution and the potential negative impacts of N have become an area of public concern. protein degradation from feed ingredients is an important factorinfluencing AA supply to the duodenum. Ruminal proteolysis...
متن کاملRuminal Protein Degradation and Estimation of Rumen Microbial Protein Production
Animal agricultural production systems are major sources of nonpoint pollution affecting quality of water sources. Nitrogen has been identified as the foremost source of nonpoint water pollution and the potential negative impacts of N have become an area of public concern. protein degradation from feed ingredients is an important factorinfluencing AA supply to the duodenum. Ruminal proteolysis...
متن کاملBioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cel...
متن کاملControllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications
Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Cell
سال: 2006
ISSN: 1097-2765
DOI: 10.1016/j.molcel.2006.04.027